精英家教网 > 高中数学 > 题目详情

【题目】已知 为自然对数的底数,若对任意的 ,总存在唯一的 ,使得 成立,则实数 的取值范围是( )
A.
B.
C.
D.

【答案】D
【解析】设 ,当 时, ,函数 上为增函数,

对任意的 ,总存在唯一的 ,使得 成立,则

的不含极值点的单调区间的子集, 上递减,在 上递增,最小值 ,最大值为 ,①要使得对任意的 ,总存在唯一的 ,使得 成立,则 的最大值不大于 的最大值 ,解得 ;② 上递减,在 上递增, 的值域为 时,有两个 值与之对应,若只有唯一的 ,则 的最小值要比 大,即:

综上: 的取值范围是
选答案为:D.

等式关于x恒成立,关于y能成立,问题转化为函数f(x)的值域是函数g(y)的不含极值点的单调区间的子集,是解题要点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a为实常数,函数f(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a≤1,函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.点M不与点O重合,称射线OM与圆x2+y2=1的交点N为点M的“中心投影点“. ⑴点M(1, )的“中心投影点”为
⑵曲线x2 上所有点的“中心投影点”构成的曲线的长度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶角D1在底面ABCD内的射影恰好为点C.
(1)求证:AD1⊥BC;
(2)若直线DD1与直线AB所成角为 ,求平面ABC1D1与平面ABCD所成角(锐角)的余弦值函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y∈R,定义xy=x(a﹣y)(a∈R,且a为常数),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在极值;
②若f(x)的反函数为h(x),且函数y=kx与函数y=|h(x)|有两个交点,则k=
③若F(x)在R上是减函数,则实数a的取值范围是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲线上存在两点,使得过这两点的切线互相垂直.
其中真命题的序号有 . (把所有真命题序号写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x+ ),将y=f(x)的图象上所有的点的横坐标缩短为原来的 倍,纵坐标不变;再把所得的图象向右平移|φ|个单位长度,所得的图象关于原点对称,则φ的一个值是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)解方程:25x+1﹣95x+2+500=0;
(2)已知关于x的不等式ax2﹣5x+b>0的解集为 ,求关于x的不等式ax2+5x+b<0的解集.

查看答案和解析>>

同步练习册答案