精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,如图放置的边长为2的正方形ABCD沿轴滚动(无滑动滚动),点D恰好经过坐标原点,设顶点的轨迹方程是,则对函数的判断正确的是(

A.函数上有两个零点

B.函数是偶函数

C.函数上单调递增

D.对任意的,都有

【答案】AB

【解析】

根据题意中的轨迹,画出函数图像,根据图像判断每个选项得到答案.

当以点为中心滚动时,点轨迹为为圆心,为半径的圆弧;

当以点为中心滚动时,点轨迹为为圆心,为半径的圆弧;

当以点为中心滚动时,点轨迹为为圆心,为半径的圆弧;

当以点为中心滚动时,点不动,然后周期循环,周期为.

画出函数图像,如图所示:

A正确;

根据图像和周期知B正确;

函数上单调递减,故在上单调递减,C错误;

,易知,故D错误.

故选:AB.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)曲线的普通方程和直线的直角坐标方程;

2)求曲线上的点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎正在全球蔓延,对世界经济影响严重,中国疫情防控,复工复学恢复经济成为各国的榜样,绵阳某商场在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电、4种日用商品中,选出3种商品进行促销活动.

1)试求选出的3种商品至少有2种服装商品的概率;

2)商场对选的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高300元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金,假设顾客每次抽奖时获奖与否是等概率的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别是的中点.将沿折成大小是的二面角

(Ⅰ)求证:平面平面

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,平面⊥平面是以为斜边的等腰直角三角形,的中点.

1)证明:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经统计某射击运动员随机射击一次命中目标的概率为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生09之间取整数值的随机数,用012表示没有击中,用3456789表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:

9597742476104281752002937140985703474373

0371623326168045601136618638781514575550

根据以上数据,则可估计该运动员射击4次恰有3次命中的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为为参数,),曲线的极坐标方程为,点的一个交点,其极坐标为.设射线与曲线相交于两点,与曲线相交于两点.

1)求的值;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种电子产品,每件产品合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个()一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验一次或次.设该工厂生产件该产品,记每件产品的平均检验次数为

1的分布列及其期望;

2)(i)试说明,当越大时,该方案越合理,即所需平均检验次数越少;

ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.

查看答案和解析>>

同步练习册答案