精英家教网 > 高中数学 > 题目详情

【题目】min(a,b)表示a,b中的最小值,执行如图所示的程序框图,若输入的a,b值分别为4,10,则输出的min(a,b)值是(
A.0
B.1
C.2
D.4

【答案】C
【解析】解:模拟程序的运行,可得 a=4,b=10
不满足判断框内条件,执行循环体,c=10,b=6,a=10
不满足判断框内条件,执行循环体,c=6,b=4,a=6
不满足判断框内条件,执行循环体,c=4,b=2,a=4
不满足判断框内条件,执行循环体,c=2,b=2,a=2
满足判断框内条件,退出循环,输出min(a,b)=2.
故选:C.
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, + )是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求证: a∈R,且a≠0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1与圆C2相交于AB两点,

(1)求公共弦AB所在的直线方程;

(2)求圆心在直线上,且经过AB两点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣e(x+1)lna﹣ (a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)经过点(0, ),离心率e=
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1 , 右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代算书《孙子算经》中有一著名的问题:今有物,不知其数.三三数之剩二;五五数之剩三;七七数之剩二.问物几何?后来,南宋数学家秦九昭在其《数书九章》中对此问题的解法做了系统的论述,并称之为“大衍求一术”.如图程序框图的算法思路源于“大衍求一术”,执行该程序框图,若输入的a,b的值分别为40,34,则输出的c的值为(
A.7
B.9
C.20
D.22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=,x∈R,其中 a>0.

(Ⅰ)求函数 f(x)的单调区间;

(Ⅱ)若函数 f(x)(x(-2,0))的图象与直线 y=a 有两个不同交点,求 a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解一种植物的生长情况抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.

(1)求该植物样本高度的平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);

(2)假设该植物的高度Z服从正态分布N(μσ2),其中μ近似为样本平均数xσ2近似为样本方差s2利用该正态分布求P(64.5<Z<96).

(附:=10.5.ZN(μσ2),P(μσZμσ)=0.682 6,P(μ-2σZμ+2σ)=0.954 4)

查看答案和解析>>

同步练习册答案