精英家教网 > 高中数学 > 题目详情
已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.(
1
4
,-1)
B.(
1
4
,1)
C.(1,2)D.(1,-2)
设准线为l:x=-1,焦点为F(1,0).
如图所示,过点P作PM⊥l,垂足为M,连接FM,则|PM|=|FP|.
故当PQx轴时,|PM|+|PQ|取得最小值|QM|=2-(-1)=3.
设点P(x,1),代入抛物线方程12=4x,解得x=
1
4
,∴P(
1
4
,1)

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知动点M(x,y)到定点(2,0)的距离比到直线x=-3的距离少1,则动点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的顶点在原点,焦点在y轴上,其上的点P(m,3)到焦点的距离为5,则抛物线方程为(  )
A.x2=8yB.x2=4yC.x2=-4yD.x2=-8y

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
3
2
2
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的曲线方程:
(1)经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程;
(2)与双曲线
x2
9
-
y2
16
=1
有公共渐近线,且经过点(-3,2
3
)的双曲线的标准方程;
(3)焦点在直线x+3y+15=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2q14•蓟县一模)抛物线x2=4y的焦点坐标是(  )
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,它的准线经过双曲线
x2
a2
-
y2
b2
=1
的左焦点,且与x轴垂直,抛物线与此双曲线交于点(
3
2
6
)
,求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知以向量
v
=(1,
1
2
)
为方向向量的直线l过点(0,
5
4
)
,抛物线C:y2=2px(p>0)的顶点关于直线l的对称点在该抛物线的准线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若
OA
OB
+p2=0
(O为原点,A、B异于原点),试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C1:x2=2y的焦点为F,以F为圆心的圆C2交C1于A,B,交C1的准线于C,D,若四边形ABCD是矩形,则圆C2的方程为(  )
A.x2+(y-
1
2
)2=3
B.x2+(y-
1
2
)2=4
C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

同步练习册答案