精英家教网 > 高中数学 > 题目详情
已知双曲线C与椭圆9x2+25y2=225有相同的焦点,且离心率e=2.
(1)求双曲线C的方程;
(2)若P为双曲线右支上一点,F1、F2为其焦点,且PF1⊥PF2,求△PF1F2的面积.
(1)设双曲线C的方程为
x2
a2
-
y2
b2
=1 (a>0,b>0)

椭圆9x2+25y2=225 可化为 
x2
25
+
y2
9
=1

c=
25-9
=4

e=
c
a
=2
∴a=2
∴b2=c2-a2=16-4=12
∴所求双曲线方程为 
x2
4
-
y2
12
=1
(6分)
(2)由已知得
|PF1|-|PF2 =4                    ①
|PF1| 2+|PF2| 2=|F1F2| 2=64   ②

②-①2得2|PF1|•|PF2|=48
∴|PF1|•|PF2|=24
S△PF1F2=
1
2
|PF1| • |PF2| =12
(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(3
2
,4)
,点B(
10
,2
5
)

(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在坐标原点O的椭圆C经过点数学公式,点数学公式
(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点O的椭圆C经过点A(3
2
,4)
,点B(
10
,2
5
)

(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京十八中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知中心在坐标原点O的椭圆C经过点,点
(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省韶关市始兴县风度中学高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知中心在坐标原点O的椭圆C经过点,点
(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

同步练习册答案