精英家教网 > 高中数学 > 题目详情
三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.
设记G(x,y),C(x0,y0),
由重心坐标公式得
x=
-2+x0
3
y=
-2+y0
3

所以x0=3x+2,y0=3y+2
因为C(x0,y0),
在y=x2+1上
所3y+2=(3x+2)2+1整理得y=3(x+
2
3
2-
1
3

所以G点的轨迹为开口向上的抛物线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连接AD、BD得到△ABD.
(i)求实数a,b,k满足的等量关系;
(ii)△ABD的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),离心率为
2
2

(1)求椭圆的标准方程;
(2)设过点F且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
,过右焦点F且斜率为
2
的直线l交椭圆E于两点A,B,若以原点为圆心,
6
3
为半径的圆与直线l相切
(1)求焦点F的坐标;
(2)以OA,OB为邻边的平行四边形OACB中,顶点C也在椭圆E上,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设x,y∈R,
i
j
为直角坐标平面内x轴y轴正方向上的单位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点AB,满足(1)直线AB过点(0,3),(2)若
OP
=
OA
+
OB
,则OAPB为矩形,试求AB方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

附加题:已知半椭圆
x2
a2
+
y2
b2
=1(x≥0)
与半椭圆
y2
b2
+
x2
c2
=1(x≤0)
组成的曲线称为“果圆”,其中a2=b2+c2,a>b>c>0,F0、F1、F2是对应的焦点.
(1)(文)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程.
(2)(理)当|A1A2|>|B1B2|时,求
b
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:x2=2py(p>0)的焦点为F,椭圆C2
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,C1与C2在第一象限的交点为P(
3
1
2

(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
AM
+
BM
=
0
,直线FM的斜率为k1,试证明k•k1
-1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条抛物线y1=x2+2mx+4,y2=x2+mx-m中至少有一条与x轴有公共点,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆
x2
16
+
y2
4
=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为(  )
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

查看答案和解析>>

同步练习册答案