精英家教网 > 高中数学 > 题目详情
双曲线的渐近线方程为
A.B.C.D.
C

试题分析:双曲线焦点在x轴,所以渐近线方程为,故选C。
点评:简单题,确定双曲线的渐近线方程,一是可用公式直接写出,二是可将标准方程中的“1”化为0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于两点,直线分别与抛物线交于点

(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两圆的位置关系是
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题满分14分)
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q的距离与点P到轴距离之和最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从双曲线的左焦点F引圆的切线FP交双曲线右支于点P,T为切点,M为线段FP的中点,O为坐标原点,则| MO | – | MT | =        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知点,△的周长为6.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线与直线垂直,则曲线的离心率等于             

查看答案和解析>>

同步练习册答案