精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

【答案】(1)减区间为(﹣1,2);(2)f(x)的最小值为-19

【解析】

(1)先求出可得减区间;(2)根据极大值为8求得然后再求出最小值

(1)f′(x)=6x2-6x﹣12=6(x-2)(x+1),

,得﹣1<x<2.

∴函数f(x)的减区间为(﹣1,2)

(2)由(1)知,f′(x)=6x2-6x﹣12=6(x+1)(x﹣2),

令f′(x)=0,得x=-1或x=2(舍).

当x在闭区间[-2,3]变化时,f′(x),f(x)变化情况如下表

x

(-2,-1)

-1

(-1,2)

2

(2,3)

f′(x)

+

0

-

0

+

f(x)

单调递增

m+7

单调递减

m-20

单调递增

∴当x=-1时,f(x)取极大值f(-1)=m+7,

由已知m+7=8,得m=1.

当x=2时f(x)取极小值f(2)=m-20=-19

又f(-2)=-3,

所以f(x)的最小值为-19.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形,.为棱上一点,平面与棱交于点.

1)求证:

2)若,试问平面是否可能与平面垂直?若能,求出的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

1)讨论的单调性;

2)证明:当时,.

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),其中.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.

1)求的直角坐标方程;

2)已知点交于点,与交于两点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,,且前7项和.

(1)求数列的通项公式;

(2),求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知函数

(1)当时,求不等式的解集;

(2)若不等式的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)已知为自然对数的底数,求函数处的切线方程;

(2)当时,方程有唯一实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.

1)证明:平面平面

2)设点P在平面上的射影为点O,点分别是的重心,当三棱锥体积最大时,回答下列问题.

i)证明:平面

ii)求三棱锥的体积.

查看答案和解析>>

同步练习册答案