精英家教网 > 高中数学 > 题目详情
3.已知抛物线x2=y上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的
纵坐标的取值范围是(  )
A.(-∞,-2]∪[2,+∞)B.(-∞,0]∪[3,+∞)C.(-∞,1]∪[3,+∞)D.(-∞,1]∪[4,+∞)

分析 设P(t2,t),Q(s2,s),通过BP⊥PQ,转化$\overrightarrow{BP}•\overrightarrow{PQ}=0$,方程化为t2+(s+1)•t+s+1=0,利用△≥0.求解即可.

解答 解:设P(t2,t),Q(s2,s)∵BP⊥PQ,∴$\overrightarrow{BP}•\overrightarrow{PQ}=0$,
即(t2-1,t-1)•(s2-t2,s-t)=(t2-1)•(s2-t2)+(t-1)•(s-t)=0
即t2+(s+1)•t+s+1=0
∵t∈R,∴必须有△=(s+1)2-4(s+1)≥0.即s2-2s-3≥0,
解得s≤-1或s≥3.
Q点的纵坐标的取值范围是:(-∞,-1]∪[3,+∞).
故选:C.

点评 本题考查向量在解析几何中的应用,直线的垂直体积的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合M={α|k•180°+30°<α<k•180°+120°,k∈Z},N={β|k•360°+90°<β<k•360°+270°,k∈Z},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出命题“末位数字是0的多位数是5的倍数”的否命题,并判断其真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
273830373531
332938342836
(1)画出茎叶图,由茎叶图你能获得哪些信息;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+1}$+$\frac{(x-1)^{0}}{\sqrt{2-x}}$的定义域是[-1,1)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx-ax在点A(1,f(1))处的切线为l.
(1)证明:无论a为何值,函数f(x)的图象恒在直线l的下方(点A除外);
(2)设点Q(x0,f(x0)),当x0>1时,直线QA的斜率恒小于2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)求函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域.
(Ⅱ)求值:27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆Q过定点F(0,-1),且与直线y=1相切;椭圆N的对称轴为坐标轴,中心为坐标原点O,F是其一个焦点,又点(0,2)在椭圆N上.
(1)求动圆圆心Q的轨迹M的方程和椭圆N的方程;
(2)过点(0,-4)作直线l交轨迹M于A,B两点,连结OA,OB,射线OA,OB交椭圆N于C,D两点,求△OCD面积的最小值.
(3)附加题(本题额外加5分):过椭圆N上一动点P作圆x2+(y-1)2=1的两条切线,切点分别为G,H,求$\overrightarrow{PG}•\overrightarrow{PH}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-2x-3>0},B={x|ax2+bx+c≤0,a,b,c∈R,ac≠0},若A∩B=(3,4],A∪B=R,则$\frac{b^2}{a}+\frac{a}{c^2}$的最小值是(  )
A.3B.$\frac{3}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案