精英家教网 > 高中数学 > 题目详情
已知三棱锥S-ABC,G1,G2分别为△SAB,△SAC的重心,则G1G2与△SBC,△ABC所在平面的位置关系是   (     )
A.垂直和平行B.均为平行C.均为垂直D.不确定
B

试题分析:根据题意,由于三棱锥S-ABC,G1,G2分别为△SAB,△SAC的重心,则G1G2与△SBC,△ABC所在平面的位置关系是,利用中位线性质定理,可知线线平行,得到线面平行,选B.
点评:主要是考查了线面平行的判定,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:点在正方体的面对角线上运动,则下列四个命题:
①三棱锥的体积不变;
∥面

④面⊥面.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,给出下列结论:
 ⇒


 ⇒.
其中正确的有(  )
A.1个B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两个互相垂直的平面,是一对异面直线,下列五个结论:
(1)(2) (3)
(4)  (5)。其中能得到的结论有     (把所有满足条件的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求异面直线所成的角的余弦值
(2)求二面角的余弦值
(3)点到面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.

(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与棱长为1的正方体的一条棱平行的截面中,面积最大的截面面积为     

查看答案和解析>>

同步练习册答案