【题目】设函数f(x)=|3x﹣1|+ax+3
(1)若a=1,解不等式f(x)≤4;
(2)若函数f(x)有最小值,求a的取值范围.
【答案】
(1)解:当a=1时,f(x)=|3x﹣1|+x+3,
当x 时,f(x)≤4可化为3x﹣1+x+3≤4,解得 ;
当x 时,f(x)≤4可化为﹣3x+1+x+3≤4,解得 .
综上可得,原不等式的解集为{x| },
(2)解:f(x)=|3x﹣1|+ax+3=
函数f(x)有最小值的充要条件为 ,
即﹣3≤a≤3
【解析】(1)需要去掉绝对值,得到不等式解得即可,(2)把含所有绝对值的函数,化为分段函数,再根据函数f(x)有最小值的充要条件,即可求得.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆C过点,且与圆外切于点,是x轴上的一个动点.
求圆C的标准方程;
当圆C上存在点Q,使,求实数m的取值范围;
当时,过P作直线PA,PB与圆C分别交于异于点P的点A,B两点,且求证:直线AB恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C, C1B1,C1D1的中点,点H在四边形A1ADD1的边及其内部运动,则H满足条件________时,有BH∥平面MNP.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照 的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).
(1)求样本容量和频率分布直方图中的的值;
(2)在选取的样本中,从高度在厘米以上(含厘米)的植株中随机抽取株,求所取的株中至少有一株高度在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+ )的图象关于直线x= 对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x﹣ )是偶函数.
其中正确结论个数( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com