精英家教网 > 高中数学 > 题目详情
(坐标系与参数方程选做题) 已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆C的参数方程为
x=cosθ+2
y=sinθ
(θ为参数),则圆心C到直线l的距离为
3
2
2
3
2
2
分析:先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.
解答:解:由直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),消去参数t得直线l的普通方程y=x+1.
由圆C的参数方程为
x=cosθ+2
y=sinθ
(θ为参数),消去参数θ得圆C的普通方程(x-2)2+y2=1.
于是圆心C(2,0)到直线l的距离=
|2-0+1|
2
=
3
2
2

故答案为
3
2
2
点评:本题考查在给出直线与圆的参数方程的条件下求圆心到直线的距离,可先把参数方程化为普通方程,再利用点到直线的距离公式求解即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为
x=2cosθ+3
y=2sinθ
(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为
2
π
4
2
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
曲线
x=t
y=
1
3
t2
(t为参数且t>0)与直线ρsinθ=1(ρ∈R,0≤θ<π)交点M的极坐标为
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(坐标系与参数方程选做题)已知在极坐标系下,点A(1,
π
3
),B(3,
3
),O是极点,则△AOB的面积等于
3
3
4
3
3
4

(2)(不等式选做题)关于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,已知点P(2,
π3
),则过点P且平行于极轴的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案