分析 (1)由对数的含义及运算法则,转化为二次方程的解,解出即可;(2)由对数的含义及运算法则,转化为二次方程的解得问题处理即可,注意定义域.
解答 解:(1)a=2时,lg(x-1)+lg(3-x)=lg(2-x),x∈(1,2),
故(x-1)(3-x)=2-x,整理得:x2-5x+5=0,
△=25-20=5>0,
x=$\frac{5±\sqrt{5}}{2}$,∵x∈(1,2),
故x=$\frac{5-\sqrt{5}}{2}$;
(2)由题意x-1>0且3-x>0,所以1<x<3,
又lg(x-1)+lg(3-x)=lg(x-1)(3-x)=lg(a-x)
所以(x-1)(3-x)=a-x在1<x<3上有两个实根,
即判断x2-5x+a+3=0在(1,3)上个实根的个数.
所以a=-x2+5x-3,x∈(1,3),
令f(x)=-x2+5x-3,x∈(1,3),
f(1)=1,f(3)=3,f($\frac{5}{2}$)=$\frac{13}{4}$,
当1<a≤3,或a=$\frac{13}{4}$时,方程有1个实根,
当3<a<$\frac{13}{4}$时,方程有2个实根,
当a>$\frac{13}{4}$,a<1时,方程无实根.
点评 本题考查二次方程实根分布问题、对数的运算法则,同时考查等价转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=\frac{1}{x}$ | B. | y=2|x| | C. | $y=ln\frac{1}{|x|}$ | D. | y=x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com