精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=e2 , 当x∈(0,e]时,求函数f(x)的最小值.

【答案】解:(Ⅰ)f′(x)=a﹣ = (x>0),①当a≤0时,由于x>0,故ax﹣1<0,f'(x)<0,
所以,f(x)的单调递减区间为(0,+∞),
②当a>0时,由f'(x)=0,得x=
在区间(0, )上,f'(x)<0,在区间( ,+∞)上,f'(x)>0,
所以,函数f(x)的单调递减区间为(0, ),
单调递增区间为( ,+∞),
综上,当a≤0时,f(x)的单调递减区间为(0,+∞);
当a>0时,函数f(x)的单调递减区间为(0, ),单调递增区间为( ,+∞);
(Ⅱ)a=e2时,f(x)=e2x﹣lnx,f′(x)= (e2x﹣1),(x>0),
∵e2>0,由(Ⅰ)得:
f(x)在(0, )递减,在( ,+∞)递增,
∴f(x)min=f( )=3.
【解析】(Ⅰ)由此根据a≤0,a>0进行分类讨论,结合导数性质求出当a≤0时,f(x)的单调递减区间为(0,+∞);当a>0时,函数f(x)的单调递减区间为(0, ),单调递增区间为( ,+∞);(Ⅱ)求出函数的导数,得到f(x)的单调区间,求出f(x)的最小值即可.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,则输出n的值为(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数y=log0.5(x2+2x+a)的值域R,命题q:函数y=x2a5在(0,+∞)上是减函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到 函数的图象,只需把y=3sinx上所有的点(
A.先把横坐标缩短到原来的 倍,然后向左平移 个单位
B.先把横坐标缩短到原来的2倍,然后向左平移 个单位
C.先把横坐标缩短到原来的2倍,然后向左右移 个单位
D.先把横坐标缩短到原来的 倍,然后向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形AOB所在圆的半径是1,弧AB的中点为C,动点M,N分别在OA,OB上运动,且满足OM=BN,∠AOB=120°.
(Ⅰ)设 ,若 ,用a,b表示
(Ⅱ)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线I的参数方程为 (t为参数),圆C的极坐标方程为ρ=2,点P关于极点对称的点P'QUOTE p的极坐标为
(1)写出圆C的直角坐标方程及点P的极坐标;
(2)设直线I与圆C相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设递增的等比数列{an}的前n项和为Sn , 已知2(an+an+2)=5an+1 , 且
(1)求数列{an}通项公式及前n项和为Sn
(2)设 ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人第一天8:00从A地开车出发,6小时后到达B地,第二天8:00从B地出发,沿原路6小时后返回A地.则在此过程中,以下说法中 ①一定存在某个位置E,两天经过此地的时刻相同
②一定存在某个时刻,两天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),两天在此段内的平均速度相同.(以上速度不考虑方向)
正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.

(1)设 ,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

查看答案和解析>>

同步练习册答案