精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数f(x)满足f(x)=f(2﹣x),且f(﹣1)=2,则f(1)+f(2)+f(3)+…+f(2017)的值为(
A.1
B.0
C.﹣2
D.2

【答案】C
【解析】解:∵f(2﹣x)=f(x),∴f[2﹣(2+x)]=f(2+x),即f(﹣x)=f(2+x),即﹣f(x)=f(2+x),
∴f(x+4)=f(4+x),故函数f(x)的周期为4.
∵定义在R上的奇函数f(x)满足f(2﹣x)﹣f(x)=0,且f(﹣1)=2,
∴f(0)=0,f(1)=﹣f(﹣1)=﹣2,f(2)=f(0)=0,f(3)=f(﹣1)=2,f(4)=f(0)=0,
∴f(1)+f(2)+f(3)+…+f(2017)=504[f(1)+f(2)+f(3)+f(4)]+f(2017)
=504×(﹣2+0+2+0)+f(1)=0+(﹣2)=﹣2,
故选:C.
【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系上的坐标,则确定的不同点的个数为(
A.6
B.32
C.33
D.34

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x2<4},N={x|x2﹣2x﹣3<0},则集合M∩N等于(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(n)=12+22+32+…+(2n)2 , 则f(k+1)与f(k)的递推关系式是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题“对任意实数x∈[﹣1,2],关于x的不等式x2﹣a≤0恒成立”为真命题的一个充分不必要条件是(
A.a≥4
B.a>4
C.a>3
D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是偶函数,且x<0时,f(x)=3x﹣1,则x>0时,f(x)=(
A.3x﹣1
B.3x+1
C.﹣3x﹣1
D.﹣3x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={﹣2,﹣1,0,1,2},集合A={x∈Z|x2+x﹣2<0},则UA=(
A.{﹣2,1,2}
B.{﹣2,1}
C.{1,2}
D.{﹣1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班生活委员为了解在春天本班同学感冒与性别是否相关,他收集了3月份本班同学的感冒数据,并制出下面一个2×2列联表:

感冒

不感冒

合计

男生

5

27

32

女生

9

19

28

合计

13

47

60

参考数据
P(K2≥2.072)≈0.15
P(K2≥2.706)≈0.10
P(K2≥6.635)≈0.010

由K2的观测值公式,可求得k=2.278,根据给出表格信息和参考数据,下面判断正确的是(
A.在犯错概率不超过1%的前提下认为该班“感冒与性别有关”
B.在犯错概率不超过1%的前提下不能认为该班“感冒与性别有关”
C.有15%的把握认为该班“感冒与性别有关”
D.在犯错概率不超过10%的前提下认为该班“感冒与性别有关”

查看答案和解析>>

同步练习册答案