精英家教网 > 高中数学 > 题目详情
已知等差数列{an}首项为a,公差为b,等比数列{bn}首项为b,公比为a,其中a,b 都是大于1的正整数,且a1<b1,b2<a3,那么a=    ;若对于任意的n∈N*,总存在m∈N*,使得   bn=am+3成立,则an=   
【答案】分析:先利用a1<b1,b2<a3,以及a,b都是大于1的正整数求出a=2,再利用am+3=bn求出满足条件的b的值即可求出等差数列{an}的通项公式.
解答:解:∵a1<b1,b2<a3
∴a<b以及ba<a+2b
∴b(a-2)<a<b,
a-2<1⇒a<3,
a=2.
又因为 am+3=bn⇒a+(m-1)b+3=b•an-1
又∵a=2,b(m-1)+5=b•2n-1,则b(2n-1-m+1)=5.
又b≥3,由数的整除性,得b是5的约数.
故2n-1-m+1=1,b=5,
∴an=a+b(n-1)=2+5(n-1)=5n-3.
故答案为2; 5n-3.
点评:本题考查等差数列与等比数列的基础知识.考查了学生的计算能力以及对数列知识的综合掌握,解题时注意转化思想的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案