精英家教网 > 高中数学 > 题目详情
9.平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\vec a+2\vec b|$=(  )
A.$\sqrt{3}$B.4C.$2\sqrt{3}$D.12

分析 利用向量数量积运算性质即可得出.

解答 解:$|\overrightarrow{a}|$=2.
$\overrightarrow{a}•\overrightarrow{b}$=$2×1×cos\frac{π}{3}$=1,
∴|$\vec a+2\vec b|$=$\sqrt{{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+4\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{{2}^{2}+4×{1}^{2}+4×1}$=2$\sqrt{3}$.
故选:C.

点评 本题考查了向量数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-x+2;
(1)判断函数的单调性并证明;
(2)画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,“sin A>sin B”是“A>B”的(  )条件.
A.充分必要B.充分不必要C.必要不充分D.不充分不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.2015年教育部开始实施高校农村专项招生计划,通过自主招生的方式招收贫困地区、革命老区的农村学生,溧阳也在招生范围内,某同学获得参加清华大学的自主招生考试机会,需参加5门功课的测试,每门考试通过的概率是$\frac{1}{3}$,每门考试是否通过相互独立,通过一门得1分,则该同学恰好得2分的概率是$\frac{80}{243}$.(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.a≥3”是“?x∈[1,2],x2-a≤0”为真命题的必要不充分条件( 在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充要”中选择填空).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\left\{{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}}\right.$,则下列结论中错误的是(  )
A.f(x)的值域为{0,1}B.f(x)是偶函数C.f(x)是周期函数D.f(π+x)=f(π-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知不等式a+2b+18>(m2-m)($\sqrt{a}$+2$\sqrt{b}$)对任意正数a,b都成立,则实数m的取值范围是(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1,设f(x)=$\frac{g(x)}{x}$
(1)求a,b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围;
(3)若f(2x-1)+k$\frac{2^x}{{|{{2^x}-1}|}}$-3k=0有三个不同的实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x、y>0,求k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的最大值.

查看答案和解析>>

同步练习册答案