【题目】已知函数, 且.
(1)判断的奇偶性并予以证明;
(2)当时,求使的的解集.
【答案】(1)见解析(2){x|0<x<1}
【解析】试题分析:(1)先求出函数的定义域为,对任意,可得,由此得到函数是奇函数;(2)由,得,由此利用对数函数性质能求出不等式的解集.
试题解析:(1)要使函数f(x)有意义.则解得-1<x<1.故所求函数f(x)的定义域为{x|-1<x<1}.且f(-x)=loga(-x+1)-loga(1+x)
=-[loga(x+1)-loga(1-x)]=-f(x),故f(x)为奇函数.
(2)因为当a>1时,f(x)在定义域{x|-1<x<1}内是增函数,所以f(x)>0>1,
解得0<x<1.所以使f(x)>0的x的解集是{x|0<x<1}.
科目:高中数学 来源: 题型:
【题目】为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线.
(1)若直线与直线平行,求实数的值;
(2)若, ,点在直线上,已知的中点在轴上,求点的坐标.
【答案】(1);(2)
【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出的值;(2)根据时,直线的方程设出点的坐标,由此求出的中点坐标,再由中点在轴上求出点的坐标.
试题解析:(1)∵直线与直线平行,
∴,
∴,经检验知,满足题意.
(2)由题意可知: ,
设,则的中点为,
∵的中点在轴上,∴,
∴.
【题型】解答题
【结束】
16
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,an=cos (n∈N*)
(1)试将an+1表示为an的函数关系式;
(2)若数列{bn}满足bn=1﹣ (n∈N*),猜想an与bn的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,
且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项;
(2)令,n=1,2,…,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆 + =1(a>b>0)的离心率为e,D为右准线上一点.
(1)若e= ,点D的横坐标为4,求椭圆的方程;
(2)设斜率存在的直线l经过点P( ,0),且与椭圆交于A,B两点.若 + = ,DP⊥l,求椭圆离心率e.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某社区中学生的课外活动,对该社区的100名中学生进行了调研,随机抽取了若干名,年龄全部介于13与18之间,将年龄按如下方式分成五组:第一组;第二组;第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三个组的频率之比为,且第二组的频数为4.
(1)试估计这100名中学生中年龄在内的人数;
(2)求调研中随机抽取的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com