精英家教网 > 高中数学 > 题目详情
已知函数的图象在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若关于x的方程在区间上恰有两个相异实根,求m的取值范围。
(Ⅰ)(Ⅱ)
本试题主要是考查了导数在研究函数中的运用。
(1)利用导数来研究解析式,根据切线的斜率即为导数几何意义的运用得到
(2)第二问求解导数,然后根据导数的正负得到增减区间,然后分析极值,得到最值。
解:(Ⅰ),      1分
由题意得           2分
解得,         3分
所以;         4分
(Ⅱ)由,       5分
在区间上单调递减,上单调递增,
,      7分
所以当时,关于x的方程在区间上恰有两个相异实根。8分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;
(Ⅱ)当时,试比较与1的大小;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(1)当时,判断函数在定义域上的单调性;
(2)求的极值点;
(3)证明对任意的正整数,不等式都成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若函数上是增函数,求正实数的取值范围;
(Ⅱ)当时,求函数上的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则实数的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.
(1)求m、n的值及函数y=f(x)的单调区间;(6分)
(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.
(Ⅰ)如果函数>0)的值域为6,+∞,求的值;
(Ⅱ)研究函数(常数>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)= 的单调递减区间是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数的图像有三个不同的交点,求实数a的取值范围。

查看答案和解析>>

同步练习册答案