精英家教网 > 高中数学 > 题目详情
8.已知椭圆$C:\frac{x^2}{3}+\frac{y^2}{2}=1$上的动点P与其顶点$A(-\sqrt{3},0)$,$B(\sqrt{3},0)$不重合.
(Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

分析 (Ⅰ)设点设P(x0,y0),从而可得直线PA与PB的斜率乘积为$\frac{y_0}{{{x_0}+\sqrt{3}}}×\frac{y_0}{{{x_0}-\sqrt{3}}}=\frac{y_0^2}{x_0^2-3}=\frac{6-2x_0^2}{3(x_0^2-3)}=-\frac{2}{3}$
(Ⅱ)设方程为y=kx+m,由两点M,N满足OM∥PA,ON∥PB及(Ⅰ)得直线OM,ON的斜率乘积为-$\frac{2}{3}$,可得到m、k的关系,再用弦长公式及距离公式,求出△OMN的底、高,表示:△OMN的面积即可.

解答 (本小题满分13分)
解:(Ⅰ)证明:设P(x0,y0),则$\frac{{{x_0}^2}}{3}+\frac{{{y_0}^2}}{2}=1$.
所以直线PA与PB的斜率乘积为$\frac{y_0}{{{x_0}+\sqrt{3}}}×\frac{y_0}{{{x_0}-\sqrt{3}}}=\frac{y_0^2}{x_0^2-3}=\frac{6-2x_0^2}{3(x_0^2-3)}=-\frac{2}{3}$.…(4分)
(Ⅱ)依题直线OM,ON的斜率乘积为$-\frac{2}{3}$.
①当直线MN的斜率不存在时,直线OM,ON的斜率为$±\frac{{\sqrt{6}}}{3}$,设直线OM的方程
是$y=\frac{{\sqrt{6}}}{3}x$,由$\left\{{\begin{array}{l}{2{x^2}+3{y^2}=6}\\{y=\frac{{\sqrt{6}}}{3}x}\end{array}}\right.$得$x=±\frac{{\sqrt{6}}}{2}$,y=±1.
取$M(\frac{{\sqrt{6}}}{2},1)$,则$N(\frac{{\sqrt{6}}}{2},-1)$.所以△OMN的面积为$\frac{{\sqrt{6}}}{2}$.
②当直线MN的斜率存在时,设直线MN的方程是y=kx+m,
由$\left\{{\begin{array}{l}{y=kx+m}\\{2{x^2}+3{y^2}-6=0}\end{array}}\right.$得(3k2+2)x2+6kmx+3m2-6=0.
因为M,N在椭圆C上,
所以△=36k2m2-4(3k2+2)(3m2-6)>0,解得3k2-m2+2>0.
设M(x1,y1),N(x2,y2),则${x_1}+{x_2}=-\frac{6km}{{3{k^2}+2}}$,${x_1}{x_2}=\frac{{3{m^2}-6}}{{3{k^2}+2}}$.$|{MN}|=\sqrt{({k^2}+1)[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}=\sqrt{({k^2}+1)[{{(\frac{-6km}{{3{k^2}+2}})}^2}-4×\frac{{3{m^2}-6}}{{3{k^2}+2}}]}$=$2\sqrt{\frac{{6({k^2}+1)(3{k^2}-{m^2}+2)}}{{{{(3{k^2}+2)}^2}}}}$.
设点O到直线MN的距离为d,则$d=\frac{|m|}{{\sqrt{{k^2}+1}}}$.
所以△OMN的面积为${S_{△OMN}}=\frac{1}{2}×d×|{MN}|=\sqrt{\frac{{6{m^2}(3{k^2}-{m^2}+2)}}{{{{(3{k^2}+2)}^2}}}}$…①.
因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为$-\frac{2}{3}$,所以$\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=-\frac{2}{3}$.
所以$\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=\frac{{(k{x_1}+m)(k{x_2}+m)}}{{{x_1}{x_2}}}=\frac{{{k^2}{x_1}{x_2}+km({x_1}+{x_2})+{m^2}}}{{{x_1}{x_2}}}$=$\frac{{2{m^2}-6{k^2}}}{{3{m^2}-6}}$.
由$\frac{{2{m^2}-6{k^2}}}{{3{m^2}-6}}=-\frac{2}{3}$,得3k2+2=2m2…②
由①②,得${S_{△OMN}}=\sqrt{\frac{{6{m^2}(3{k^2}-{m^2}+2)}}{{{{(3{k^2}+2)}^2}}}}=\sqrt{\frac{{6{m^2}(2{m^2}-{m^2})}}{{4{m^4}}}}=\frac{{\sqrt{6}}}{2}$.
综上所述,${S_{△OMN}}=\frac{{\sqrt{6}}}{2}$.                      …(13分)

点评 本题考查了直线的斜率公式,三角形的面积公式,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,AC=BC,AB=AA1,∠A1AB=60°,D是AB的中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)求证:AB⊥平面A1CD;
(Ⅲ)若AB=AC=2,${A_1}C=\sqrt{6}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,三棱柱A1B1C1-ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中点.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆A:(x+1)2+y2=8,动圆M经过点B(1,0),且与圆A相切,O为坐标原点.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)直线l与曲线C相切于点M,且l与x轴、y轴分别交于P、Q两点,求证:$\overrightarrow{OM}$•$\overrightarrow{PQ}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线方程为3x+2y=0,则b等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.$\frac{1}{a}>\frac{1}{b}$C.ab<b2D.a3-b3<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a>0,已知函数$f(x)=\sqrt{x}-ln(x+a)$(x>0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)试判断函数f(x)在(0,+∞)上是否有两个零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,若$|{\overrightarrow{AB}-\overrightarrow{AD}}|=|{\overrightarrow{AB}+\overrightarrow{AD}}|$,则平行四边形ABCD是(  )
A.矩形B.梯形C.正方形D.菱形

查看答案和解析>>

同步练习册答案