精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,如果存在实数m,n(m<n),使得f(x)的定义域和值域分别是[m,n]和[3m,3n],则m+n=_____

【答案】-4

【解析】

根据题意,分析fx)的对称轴以及最大值,进而分3种情况讨论,判断出函数在[mn]的单调性,进而构造出满足条件的方程,解方程即可得到答案.

根据题意,二次函数x﹣1)2的对称轴为x=1,最大值为

分3种情况讨论:

,当mn≤1时,fx)在[mn]上递增,则有

解可得m=﹣4,n=0,

此时m+n=﹣4;

,当m<1<n时,fx)的最小值为f(1)3n,解可得n

m<1<n矛盾,不符合题意;

,当1≤mn时,fx)在[mn]上递减,

fx)的值域分别是[3m,3n],必有3n,则有n不符合题意;

m+n=﹣4;

故答案为:﹣4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100,当n为何值时,数列 的前n项和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值0,最小值

(1)求实数的值;

(2)若关于x的方程上有解,求实数k的取值范围;

(3)若,如果对任意都有,试求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一隧道内设双行线路,其截面由一长方形和一抛物线构成。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部(抛物线)在竖直方向上的高度之差至少为0.5m,若行车道总宽度AB6m,请计算通过隧道的车辆的限制高度(精确度为0.1m)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , a1=a.当n≥2时,Sn2=3n2an+Sn12 , an≠0,n∈N*
(1)求a的值;
(2)设数列{cn}的前n项和为Tn , 且cn=3n1+a5 , 求使不等式4Tn>Sn成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆,直线x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为

(1)求椭圆的离心率;

(2) 设点C、D、F2分别为椭圆的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆 相交于M、N 两点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在使得成立。

(1)函数是否属于集合M?请说明理由;

(2)函数M,a的取值范围;

(3)设函数,证明:函数M。

查看答案和解析>>

同步练习册答案