精英家教网 > 高中数学 > 题目详情

【题目】设全集为R,集合A={x||x|≤2},B={x| >0},则A∩RB=(
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)

【答案】B
【解析】解:集合A中的不等式解得:﹣2≤x≤2,即A=[﹣2,2];
集合B中的不等式解得:x>1,即B=(1,+∞),
∴CRB=(﹣∞,1],
则A∩CRB=[﹣2,1].
故选B
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点在椭圆上, ,过点的直线与椭圆分别交于两点.

(1)求椭圆的方程及离心率;

(2)若的面积为为坐标原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S. ①当 时,S为四边形
②截面在底面上投影面积恒为定值
③不存在某个位置,使得截面S与平面A1BD垂直
④当 时,S与C1D1的交点满足C1R1=
其中正确命题的个数为

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1的左右焦点分别为F1 , F2 , 直线l过椭圆的右焦点F2与椭圆交于A,B 两点, (Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为 的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面底面 ,点 分别是 的中点.

(1)证明: 平面

(2)若 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该运动员射击4次至少击中3次的概率为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两个正根,求m的取值范围.
(2)若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,3)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数a,b,c,d,以下四个命题中的真命题是(
A.若a>b,c≠0则ac>bc
B.若a>b>o,c>d则ac>bd
C.若a>b,则
D.若ac2>bc2则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆过点 分别为椭圆的右、下顶点,且

(1)求椭圆的方程;

(2)设点在椭圆内,满足直线 的斜率乘积为,且直线 分别交椭圆于点

(i) 若 关于轴对称,求直线的斜率;

(ii) 求证: 的面积与的面积相等.

查看答案和解析>>

同步练习册答案