精英家教网 > 高中数学 > 题目详情
15.函数y=x2-2|x|+1的单调递减区间为(-∞,-1),和(0,1).

分析 由函数表达式可知,函数为偶函数,构造函数y=t2-2t+1=(t-1)2,得出在(0,1)上递减,在(1,+∞)上递增,
根据偶函数图象关于y轴对称,可得出原函数的单调区间.

解答 解:y=x2-2|x|+1.
∴函数为偶函数,
令t=|x|,
∴y=t2-2t+1=(t-1)2
∴在(0,1)上递减,在(1,+∞)上递增,
由偶函数的对称性可知,函数y=x2-2|x|+1的减区间为(-∞,-1,和(0,1).
故答案为(-∞,-1),和(0,1).

点评 考查了偶函数的性质和单调区间的判断.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=logax(a>0,且a≠1)满足f(27)=3,则f-1(log92)的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知 p:x<-1,q:x<-2,则p是q的(  )
A.充分但不必要条件B.必要但不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足条件$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}≥0}\\{x+ay+b≤0}\\{x≥0}\end{array}\right.$,z=x-y的最大值、最小值分别为M、m,且M-m=1,则a+b的取值范围为(  )
A.[$\frac{3\sqrt{3}}{2}$-2,$\frac{\sqrt{3}}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.[$\sqrt{6}$-3,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{23}{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=-$\frac{1}{x}$+1
(1)当x<0时,求函数f(x)的解析式;
(2)证明函数f(x)在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若关于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)有实根,且不等式(a-b)2+(b-c)2+(c-a)2≥ma2恒成立,则实数m的最大值为(  )
A.$\frac{9}{16}$B.$\frac{3}{4}$C.1D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合M={y|y=sinx},N={x|x2-4≤0},则M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若实数a满足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)设函数f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),对于一切正整数n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)设函数φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函数g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),试判断g(1.2),g(2.5),g(t)的大小关系.(请按由大到小的顺序排)

查看答案和解析>>

同步练习册答案