精英家教网 > 高中数学 > 题目详情
已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )
分析:利用二次函数的图象和性质分别判断f[f(x)]与x的关系.
解答:解:方程f(x)=x无实根,∴f(x)-x>0或f(x)-x<0.
∵a>0,∴f(x)-x>0对一切x∈R成立,
∴f(x)>x,用f(x)代入,
∴f[f(x)]>f(x)>x,∴命题①正确;
同理若a<0,则有f[f(x)]<x,∴命题②错误;命题③正确;
∵a+b+c=0,∴f(1)-1<0,
∴必然归为a<0,有f[f(x)]<x,∴命题④正确.
故选C.
点评:本题主要考查了二次函数的性质以及二次不等式的应用,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步练习册答案