精英家教网 > 高中数学 > 题目详情
如图,为⊙的两条切线,切点分别为,过的中点作割线交⊙两点,若          .
4

试题分析:由切割线定理得,所以,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,半圆的直径的长为4,点平分弧,过的垂线交,交
(1)求证:
(2)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,外一点,是切线,为切点,割线相交于的中点,的延长线交于点.证明:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.

(1)求证:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是F1(-
2
,0),F2(
2
,0)

(1)若椭圆C上一动点M1满足|
M1F1
|+|
M1F2
|=4,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点P(0,t)(t<0)作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为2
3
,求P点的坐标;
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使椭圆C的“伴随圆”上的点到过两点(m,m2),(n,n2)的直线的最短距离dmin=
a2+b2-b
.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,E为CD上一点,DE∶EC=2∶3,连接AE,BE,BD,且AE,BD交于点F,则SDEF∶SEBF∶SABF=(  )
A.4∶10∶25B.4∶9∶25
C.2∶3∶5D.2∶5∶25

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且 DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为 _________ 

查看答案和解析>>

同步练习册答案