分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即A(3,4),
代入目标函数z=2x+y得z=2×3+4=6+4=10.
即目标函数z=2x+y的最大值为10.
故答案为:10.
点评 本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
A. | ?x0∈R,3${\;}^{{x}_{0}}$+1>$\frac{3}{2}$ | B. | ?x0∈R,3${\;}^{{x}_{0}}$+1≥$\frac{3}{2}$ | ||
C. | ?x∈R,3x+1>$\frac{3}{2}$ | D. | ?x∈R,3x+1<$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (一1,1) | B. | (一2,2) | C. | (一1,2) | D. | (一2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com