精英家教网 > 高中数学 > 题目详情
(2012•济南三模)下列正确命题的序号是
(2)(3)
(2)(3)

(1)“m=-2”是直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的必要不充分条件;
(2)?a∈R,使得函数y=|x+1|+|x+a|是偶函数;
(3)不等式:
1
2
•1
1
1
1
2
1
3
•(1+
1
3
)
1
2
•(
1
2
+
1
4
)
1
4
•(1+
1
3
+
1
5
)
1
3
•(
1
2
+
1
4
+
1
6
)
,…,由此猜测第n个不等式为
1
n+1
(1+
1
3
+
1
5
+
…+
1
2n-1
)
1
n
•(
1
2
+
1
4
+
1
6
)
…+
1
2n
)

(4)若二项式(x+
2
x2
)n
的展开式中所有项的系数之和为243,则展开式中x-4的系数是40.
分析:(1)直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直时,(m+2)(m-2)+m(m+2)=0,可得m=-2或m=1;(2)当a=-1时,y=|x+1|+|x-1|为偶函数;由归纳推理可知,(3)正确;(4)先求展开式的通项,再求展开式中x-4的系数即可.
解答:解:当m=-2时,两直线为y=
1
2
x=-
3
4
,此时两直线垂直,反之,直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直时,(m+2)(m-2)+m(m+2)=0,∴m=-2或m=1,∴“m=-2”是直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件,所以(1)错误;
所以当a=-1时,y=|x+1|+|x-1|为偶函数,所以(2)正确;
由归纳推理可知,(3)正确;
令x=1,则得所有项系数为3n=243,解得n=5,二项式的通项公式为Tk+1=
C
k
5
x5-k(
2
x2
)k=
C
k
5
x5-3k2k

令5-3k=-4,得k=3,所以T4=
C
3
5
x-423
,所以系数为
C
3
5
23=80
,所以(4)错误,
故正确的为(2)(3).
故答案为:(2)(3)
点评:本题考查命题真假判断,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济南三模)经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N﹢)的旅游人数f(t) (万人)近似地满足f(t)=4+
1t
,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.
(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N)的函数关系式;
(2)求该城市旅游日收益的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)某旅游景点预计2013年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=
1
2
x(x+1)•(39-2x),(x∈N*,且x≤12).已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(I)写出2013年第x月的旅游人数f(x)(单位:人)与x的函数关系式;
(II)试问2013年第几月旅游消费总额最大,最大月旅游消费总额为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且2PA=AD,E、F、G、H分别是线段PA、PD、CD、BC的中点.
(Ⅰ)求证:BC∥平面EFG;
(Ⅱ)求证:DH⊥平面AEG;
(Ⅲ)求三棱锥E-AFG与四棱锥P-ABCD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)已知直线l:y=x+1,圆O:x2+y2=
3
2
,直线l被圆截得的弦长与椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长相等,椭圆的离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)设函数f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)导函数.
(I)求函数f(x)的单调递增区间;
(Ⅱ)当k为偶数时,数列{an}满足a1=1,anf(an)
=a
2
n+1
-3
.证明:数列{
a
2
n
}中不存在成等差数列的三项;
(Ⅲ)当k为奇数时,设bn=
1
2
f
(n)-n
,数列{bn}的前n项和为Sn,证明不等式(1+bn)
1
bn+1
e对一切正整数n均成立,并比较S2012-1与ln2012的大小.

查看答案和解析>>

同步练习册答案