精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[﹣ ]上的单调减区间.

【答案】
(1)解:由题意知: ,∴

,∴ (k∈Z), (k∈Z),又|φ|<π,∴

∴函数f(x)的解析式:


(2)解:由 ,k∈Z,得

所以f(x)的增区间为 ,k∈Z


(3)解:再根据x∈[﹣ ],可得函数f(x)在[﹣ ]上的单调减区间为[﹣ ].
【解析】(1)由图象相邻的最高点和最低点的横坐标之差可求最小正周期,最高点纵坐标可求得振幅,将最高点代入解析式中求初相,可得函数的解析式(2)正弦函数的单调增区间为 ,所以可令 ,由此解出x的范围,即为要求的f(x)的单调增区间.(3)由(2)结合x∈[﹣ ],可得函数f(x)在[﹣ ]上的单调减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面 分别是棱的中点.

(Ⅰ)求证:平面

(Ⅱ)若线段上的点满足平面平面,试确定点的位置,并说明理由.

(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点

(Ⅰ)当直线过点且与圆心的距离为时,求直线的方程.

(Ⅱ)设过点的直线与⊙交于 两点,且,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ (a>1)
(1)证明:函数f(x)在(﹣1,+∞)上为增函数;
(2)用反证法证明f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极值;

(Ⅱ) 时,讨论的单调性;进一步地,若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为圆 上一点, ,且

(1)求椭圆的方程;

(2)当过点的动直线与椭圆相交于不同两点时,线段上取点,且满足,证明点总在某定直线上,并求出该定直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B

(1)证明:平面AB1C⊥平面A1BC1
(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是(  )
A.平均数为160
B.中位数为158
C.众数为158
D.方差为20.3

查看答案和解析>>

同步练习册答案