精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若函数的值域为,求的值;
(Ⅱ)若函数的函数值均为非负数,求的值域.

(1). (2)[-,4].

解析试题分析:解:(Ⅰ)解:(1)函数的值域为

.    4分
(2)∵对一切 函数值均为非负,
,  6分
 ,
 
  10分
∵二次函数在[-1,]上单调递减,
即-≤4,
的值域为[-,4].   12分
考点:二次函数
点评:主要是考查了二次函数的性质以及值域的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,求在区间[2,5]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处取得极大值,求函数的单调区间
(2)若对任意实数,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数
(1)若,求实数b,c的值;
(2)若
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数处的切线方程为
(1)求的值;
(2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,记的导函数的导函数

的导函数,…,的导函数.
(1)求
(2)用n表示
(3)设,是否存在使最大?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点,且点处的切线方程为在
(1)求函数的解析式;            (2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当 时,,且
(1)求的值,(2)求的值.

查看答案和解析>>

同步练习册答案