精英家教网 > 高中数学 > 题目详情

求下面数列的前n项和:
1,3,5,7,…

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列中,,前项和是前项中所有偶数项和的倍.
(1)求通项
(2)已知满足,若是递增数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,
(1)求
(2)求证:是等比数列,并求的通项公式
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为.
(1)求数列的通项公式;
(2)设log2an+1 ,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn
(3)求证:不等式Sn+1≤4Sn对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求数列{an}的通项an;
(2)求证:数列为等比数列,并求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn,求通项an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列的前项和,已知成等差数列.
(1)求数列的公比和通项
(2)若是递增数列,令,求.

查看答案和解析>>

同步练习册答案