精英家教网 > 高中数学 > 题目详情
已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P;
(1)求动点P的轨迹E的方程;
(2)直线y=
3
x+1与曲线E交于M,N两点,试问在曲线E位于第二象限部分上是否存在一点C,使
OM
+
ON
OC
共线(O为坐标原点)?若存在,求出点C的坐标;若不存在,请说明理由.
分析:(1)利用椭圆的定义判断点P的轨迹 是以A、F 为焦点的椭圆,求出a、b的值,即得椭圆的方程.
(2)先假设存在一点C并设出坐标,以及设出M,N的坐标,根据向量共线得出x0=
x1+x2
m
y0=
y1+y 2
m
,然后联立直线方程和椭圆方程,得出x1+x2,y1+y2,进而得出x0=-
8
3
15m
y
 
0
=
2
5m
,求出m的值,即可求出C的坐标.
解答:解:(1)由题意|PA|=|PB|,且|PB|+|PF|=8,
∴|PA|+|PF|=8>|AF|.
因此点P的轨迹是以A,F为焦点的椭圆.(4分)
设所求椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)

∴2a=8,a=4,a2-b2=c2=22=4∴b2=12
∴点P的轨迹方程为
x2
16
+
y2
12
=1
.(6分)
(2)假设存在满足题意的点C(x0,y0)(x0<0,y0>0),设M(x1,y1),N(x2,y2),
OM
+
ON
=m
OC
(m∈R,且m≠0),
则(x1+x2,y1+y2)=m(x0,y0).
∴x0=
x1+x2
m
,y0=
y1+y2
m

y=
3
x+1
x2
16
+
y2
12
=1
,得15x2+8
3
x-44=0
.(8分)
x1+x2=-
8
3
15
y1+y2=
3
(x1+x2)+2=
2
5
.∴x0=-
8
3
15m
y
 
0
=
2
5m
.(10分)
x
2
0
16
+
y
2
0
12
=1,解得m2=
1
15
.∴m=±
15
15

又∵x0<0,y0>0
m=
15
15

所以存在满足题意的点C(-
8
5
5
2
15
5
)(14分)
点评:本题考查了椭圆的定义以及直线与圆锥曲线问题,(1)问的关键是灵活掌握椭圆的定义.属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知定点A(2,0)及抛物线y2=x,点B在该抛物线上,若动点P使得
AP
+2
BP
=
0
,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
1
4
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II )过定点T(-1,0)的动直线l与曲线C交于P,Q两点,是否存在定点S(s,0),使得
SP
SQ
为定值,若存在求出s的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
1
4
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II)过定点T(-1,0)的动直线l与曲线C交于P,Q两点,若S(-
17
8
,0),证明:
SP
SQ
为定值.

查看答案和解析>>

同步练习册答案