精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①若函数f(x)是f(x)=x2(x∈R),则f(x)一定是单函数;
②若f(x)为单函数,x1、x2∈A且x1≠x2,则f(x1)≠f(x2);
③若定义在R上的函数f(x)在某区间上具有单调性,则f(x)一定是单函数;
④若函数f(x)是周期函数,则f(x)一定不是单函数;
⑤若函数f(x)是奇函数,则f(x)一定是单函数.
其中的真命题的序号是
②④
②④
分析:利用单函数的定义分别对五个命题进行判断,即可得出正确结论.
解答:解:①若函数f(x)是f(x)=x2,则由f(x1)=f(x2)得
x
2
1
=
x
2
2
,得到x1=±x2,所以①不是单函数,所以①错误.
②若f(x)为单函数,则f(x1)=f(x2)时总有x1=x2,即x1≠x2,则f(x1)≠f(x2),所以②正确.
③当函数单调时,在单调区间上必有f(x1)=f(x2)时总有x1=x2,但在其他定义域上,不一定是单函数,所以③错误.
④若函数f(x)是周期函数,则满足f(x1)=f(x2),则有x1=kT+x2,所以④正确.
⑤若函数f(x)是奇函数,比如f(x)=sinx,是奇函数,则满足f(x1)=f(x2),则x1,x2,不一定相等.所以⑤错误.
故答案为:②④.
点评:本题主要考查函数的性质的推导和判断,考查学生分析问题的能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案