【题目】已知数列的首项,其前n项和为,对于任意正整数,都有.
(1)求数列的通项公式;
(2)设数列满足.
①若,求证:数列是等差数列;
②若数列都是等比数列,求证:数列中至多存在三项.
【答案】(1)(2)①见证明;②见证明;
【解析】
(1)由可得,进而得到数列的通项公式;
(2)①由可得,利用待定系数法可得从而得证;②利用反证法证明即可.
(1)令,则由,得
因为,所以,
当时,,且当n=1时,此式也成立.
所以数列的通项公式为
(2)①【证法一】因为,
,
所以.
由得,
所以,
所以,
所以,
所以,
所以数列是等差数列.
【证法二】
因为
所以
所以.
所以,
所以,
记
,
两式相减得,
所以,
所以,当时,,
由得,
所以,当时,,当n=1时,上式也成立,
所以,(iii)
所以数列是等差数列.
【证法三】
因为
所以,(i)
所以,(ii)
(i)-(ii)得,(iii)
所以,(iv)
(iii)-(iv)得,
所以.
由知.
所以,
所以数列是等差数列
②不妨设数列超过三项,令,
由题意,则有,
即,
代入,整理得 (*),
若p=q=1,则,与条件矛盾;
若,当n=1时,,①
当n=2时,,②
②÷①得,p=q,代入(*)得b=c,所以,与条件矛盾.
故这样的数列至多存在三项.
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,椭圆C:的左、右焦点分别为,,右顶点为A,上顶点为B,若,,成等比数列,椭圆C上的点到焦点的距离的最大值为.
求椭圆C的标准方程;
过该椭圆的右焦点作倾角为的直线与椭圆交于M,N两点,求的内切圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的方程为:
当极点到直线的距离为时,求直线的直角坐标方程;
若直线与曲线有两个不同的交点,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | |
男生 | 20 | 5 |
女生 | 10 | 20 |
临界值参考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过的前提下,认为“喜欢“应用统计”课程与性别有关”
B.在犯错误的概率不超过的前提下,认为“喜欢“应用统计”课程与性别无关”
C.有以上的把握认为“喜欢应用统计”课程与性别有关”
D.有以上的把握认为“喜欢“应用统计”课程与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系中,已知正四棱锥的高,点和分别在轴和轴上,且,点是棱的中点.
(1)求直线与平面所成角的正弦值;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com