精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|2≤x≤11},B={x|4≤x≤20},C={x|x≤a}.
(1)求A∪B与(RA)∩B;
(2)若A∩C≠,求a的取值范围.

【答案】
(1)解:集合A={x|2≤x≤11},B={x|4≤x≤20},

∴A∪B={x|2≤x≤20}=[2,20];

RA={x|x<2或x>11},

∴(RA)∩B={x|11<x≤20}=(11,20]


(2)解:集合A={x|2≤x≤11},C={x|x≤a},

当A∩C≠时,a≥2


【解析】(1)根据并集与补集、交集的定义进行计算即可;(2)化简交集和空集的定义,即可得出结论.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?(写出必要的解答过程)
(1)两个女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从左向右身高依次递减的顺序站;
(4)老师不站中间,女生不站两端.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(
A.60
B.48
C.42
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2A时,恒有F(x1)+f(x2)=2b,则称(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2016)+f(﹣2015)+f(﹣2015)+f(﹣2014)+…+f(2014)+f(2015)+f(2016)=(
A.0
B.2016
C.4032
D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题P:x>0,x>lnx,则¬p为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在(﹣1,1)上的减函数,且f(1﹣t)+f(1﹣t2)<0,则 t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意正整数n,猜想2n﹣1与(n+1)2的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x丨丨x﹣1丨<2},B={x丨y=lg(x2+x)},设U=R,则A∩(UB)等于(  )
A.[3,+∞)
B.(﹣1,0]
C.(3,+∞)
D.[﹣1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题“已知点A、B都在直线l上,若A、B都在平面α上,则直线l在平面α上”,试用符号语言表述这个命题

查看答案和解析>>

同步练习册答案