【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为(为参数),,为过点的两条直线,交于,两点,交于,两点,且的倾斜角为,.
(1)求和的极坐标方程;
(2)当时,求点到,,,四点的距离之和的最大值.
科目:高中数学 来源: 题型:
【题目】为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程非一户一表用户电费采用“合表电价”收费标准:元度“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:
第一档 | 第二档 | 第三档 | |
每户每月用电量单位:度 | |||
电价单位:元度 |
例如:某用户11月用电410度,采用合表电价收费标准,应交电费元,若采用阶梯电价收费标准,应交电费元.
为调查阶梯电价是否能到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量单位:度为:88、268、370、140、440、420、520、320、230、380.
(1)在答题卡中完成频率分布表,并绘制频率分布直方图;
根据已有信息,试估计全市住户11月的平均用电量同一组数据用该区间的中点值作代表;
设某用户11月用电量为x度,按照合表电价收费标准应交元,按照阶梯电价收费标准应交元,请用x表示和,并求当时,x的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于的用户带来实惠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为
(1)求的概率;
(2)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同。每次游戏需要从这两个箱子里面各随机摸出两个球.
(1)设在一次游戏中,摸出红球的个数为,求分布列.
(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正整数1,2,3,,n,排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用表示,则100可表示为______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 | ||
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有6人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,主办方制作了一款电脑软件:按下电脑键盘“”键则会出现模拟抛两枚质地均匀的骰子的画面,若干秒后在屏幕上出现两个点数和,并在屏幕的下方计算出的值.主办方现规定:每个人去按“”键,当显示出来的小于时则参加甲游戏,否则参加乙游戏.
(1)求这6个人中恰有2人参加甲游戏的概率;
(2)用、分别表示这6个人中去参加甲,乙游戏的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左、右焦点分别为,过点的直线交于,两点,的周长为, 的离心率
(Ⅰ)求的方程;
(Ⅱ)设点,,过点作轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com