精英家教网 > 高中数学 > 题目详情
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角B-PA-D的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
考点:二面角的平面角及求法,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)证明BD⊥PO,BD⊥AC,利用线面垂直的判定定理证明BD⊥平面PAC;
(Ⅱ)证明∠BAD为二面角B-PA-D的平面角,即可求解;
(Ⅲ)设F为PC中点,取PE中点G,连接FG、BG,设AC、BD交于O,连接OE,由三角形中位线定理可得GF∥EC,OE∥BP,根据面面平行的判定定理可得平面BGF∥平面AEC,由面面平行的性质可得BF∥平面AEC.
解答: 解:设BD∩AC=O,则
∵ABCD是菱形,PB=PD,
∴BD⊥PO,BD⊥AC,
∵AC∩PO=O,
∴BD⊥平面PAC;
(Ⅱ)∵PA=AC=a,PB=PD=
2
a,∠ABC=60°,
∴AB=BC=AC=a,∠PAB=∠PAD=90°,
∴∠BAD为二面角B-PA-D的平面角,
∴二面角B-PA-D的大小为120°;
(Ⅲ)设F为PC中点,取PE中点G,连接FG、BG
设AC、BD交于O,连接OE
由PG=GE,PF=FC得GF∥EC
由DO=OB,DE=EG得OE∥BG
∴平面BGF∥平面AEC
∴BF∥平面AEC
∴F是PC中点时,BF∥平面AEC.
点评:本题考查直线与平面平行的判定,二面角的求法,直线与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,转化思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是公差d<0的等差数列,Sn为其前n项和,若S6=5a1+10d,则Sn取最大值时,n=(  )
A、5B、6C、5或6D、6或7

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x-2)=3x-5,求f(x);
(2)若f{f[f(x)]}=27x+26,求一次函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-3,a+1,a2},B={2a-1,a-3,a2+1},若A∩B={-3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M⊆{-1,0,2},且M中含有两个元素,则符合条件的集合M有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如右图,根据图中标出的尺寸可得这个几何体的体积是(  )
A、
1
3
B、
2
3
C、
4
3
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆方程x2+3y2=12,过D(0,10)直线l交椭圆于A、B两点,若OAB为直角三角形,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3+ax2+bx-26(a,b∈R)在x=-3和x=2处取到极值.
(1)求a,b和f(-3)-f(2)的值;
(2)求最大的正整数t,使得?x1,x2∈[-t,t]时,|f(x1)-f(x2)|≤125与|f′(x1)-f′(x2)|≤125同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,其中俯视图是边长为2的正三角形,侧视图是直角三角形,则此几何体的体积为
 

查看答案和解析>>

同步练习册答案