精英家教网 > 高中数学 > 题目详情

【题目】如图,一个的矩形),被截取一角(即), ,平面平面 .

(1)证明:

(2)求二面角的大小的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)过,由面面垂直性质定理得平面,即得,再在平面内,根据平几知识计算可得.最后根据线面垂直判定定理得平面,即得.(2)求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系求解.

试题解析:(Ⅰ)证明:因为

所以

所以截去的是等腰直角三角形.

如图,过,垂足为,连接

因为,所以

,故是等腰直角三角形,所以

所以,即

因为平面平面,平面平面 平面

所以平面,所以,而

所以平面,又平面

所以

(Ⅱ)解:如图4,以为原点, 所在直线分别为轴、轴,建立空间直角坐标系,

所以

设平面的法向量为,则

所以平面的一个法向量为

设平面的法向量为,则

所以平面的一个法向量为

所以

因为二面角为钝二面角,

所以二面角的大小的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(﹣3,4)
(1)若l与直线y=﹣2x+5平行,求其一般式方程;
(2)若l与直线y=﹣2x+5垂直,求其一般式方程;
(3)若l与两个坐标轴的截距之和等于12,求其一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划销售某种产品,先试销该产品天,对这天日销售量进行统计,得到频率分布直方图如图.

(Ⅰ)若已知销售量低于50的天数为23,求

(Ⅱ)厂家对该超市销售这种产品的日返利方案为:每天固定返利45元,另外每销售一件产品,返利3元;频率估计为概率.依此方案,估计日返利额的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,实数是常数.

(Ⅰ)若=2,函数图像上是否存在两条互相垂直的切线,并说明理由.

(Ⅱ)若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.

(1)补全上述列联表;

(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用表示这3人指标之和,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1
(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+1)x+1(a∈R)
(1)若关于x的不等式f(x)>0的解集为R,求实数a的取值范围;
(2)若关于x的不等式f(x)≤0的解集为P,集合Q={x|0≤x≤1},若P∩Q=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(﹣1,2),B(m,3).且实数m∈[﹣ ﹣1, ﹣1],求直线AB的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求E的方程;

2)若直线E相交于两点,且为坐标原点)的斜率之和为2,求点到直线的距离的取值范围.

查看答案和解析>>

同步练习册答案