精英家教网 > 高中数学 > 题目详情

【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = =

【答案】解:(Ⅰ)由题所给的数据样本平均数 = =4, = =4.3.

(xi )(yi )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+0+1×0.5+2×0.9+3×1.6=14

(xi2=9+4+4+0+1+4+9=28.

= =

=4.3﹣ ×4=2.3,

∴y关于x的线性回归方程为:y= x+2.3.

(Ⅱ)由(Ⅰ)可得线性回归方程为y= x+2.3.

2017年人均纯收入,即x=8,可得y= (万元).

即预测该村2017年人均纯收入为6.3万元.


【解析】(Ⅰ)利用公式求出,从而可得y关于x的线性回归方程;(Ⅱ)利用(I)的线性回归方程,代入 x=8,可得该村2017年人均纯收入.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)过点( ,1),且与直线 x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月10日,CBA半决赛开打,采用7局4胜制(若某对取胜四场,则终止本次比赛,并获得进入决赛资格),采用2﹣3﹣2的赛程,辽宁男篮将与新疆男篮争夺一个决赛名额,由于新疆队常规赛占优,决赛时拥有主场优势(新疆先两个主场,然后三个客场,再两个主场),以下是总决赛赛程:

日期

比赛队

主场

客场

比赛时间

比赛地点

17年3月10日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月12日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月15日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月17日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月19日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月22日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月24日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐


(1)若考虑主场优势,每个队主场获胜的概率均为 ,客场取胜的概率均为 ,求辽宁队以比分4:1获胜的概率;
(2)根据以往资料统计,每场比赛组织者可获得门票收入50万元(与主客场无关),若不考虑主客场因素,每个队每场比赛获胜的概率均为 ,设本次半决赛中(只考虑这两支队)组织者所获得的门票收入为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为 ,且当 时, 取得最大值 .

(1)求 的解析式及单调增区间;

(2)若 ,且 ,求 ;

(3)将函数 的图象向右平移 )个单位长度后得到函数 是偶函数,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xlnx+ax,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆心的圆与轴交于轴交与,其中为原点.

(1)求证:的面积为定值;

(2)设直线与圆交于点,若,求圆的方程.

查看答案和解析>>

同步练习册答案