精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin
ωx+?
2
cos
ωx+?
2
+sin2
ωx+?
2
(ω>0,0<?<
π
2
)
.其图象的最高点与相邻对称中心的距离为
1+
π2
16
,且过点(
π
3
,1)

(Ⅰ)求函数f(x)的达式;
(Ⅱ)在△ABC中.a、b、c分别是角A、B、C的对边,a=
5
CA
CB
=10
,角C为锐角.且满足2a=4asinC-csinA,求c的值.
分析:(Ⅰ)利用两角和差的正弦公式化简函数的解析式,根据函数的周期求ω,把所给的点的坐标代入求出Φ的值,从而确定出函数的解析式.
(Ⅱ)根据条件2a=4asinC-csinA,由正弦定理求得sinC的值,可得cosC的值,再由余弦定理求得c的值.
解答:解:(Ⅰ)由于f(x)=
3
2
sin(ωx+?)+
1
2
[1-cos(ωx+?)]=sin(ωx+?-
π
6
)+
1
2
.(2分)
∵最高点与相邻对称中心的距离为
1+
π2
16
,则
T
4
=
π
4
,即T=π,(3分)
|ω|
,∵ω>0,∴ω=2.(4分)
又f(x)过点(
π
3
,1)
,∴sin(
3
+?-
π
6
)+
1
2
=1
,即sin(
π
2
+?)=
1
2
,∴cos?=
1
2
.(5分)
0<?<
π
2
,∴?=
π
3
,∴f(x)=sin(2x+
π
6
)+
1
2
.(6分)
(Ⅱ)2a=4asinC-csinA,由正弦定理可得 2sinA=4sinAsinC-sinCsinA,解得 sinC=
2
3
.(8分)
又∵0<C<
π
2
,∴cosC=
5
3
.(9分)
a=
5
CA
CB
=abcosC=10
,∴b=6,(11分)
由余弦定理得c2=a2+b2-2abcosC=21,∴c=
21
.(12分)
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,两角和差的正弦公式、正弦定理和余弦定理的应用,两个向量的数量积的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案