精英家教网 > 高中数学 > 题目详情
6.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

分析 根据题意,先求出直线y=kx+2与圆x2+y2=1相切时k的值,进而分析可得条件p是条件q的充分不必要条件,结合充要条件的性质可得¬p是¬q的必要不充分条件,即可得答案.

解答 解:根据题意,若直线y=kx+2与圆x2+y2=1相切,
则有$\frac{|2|}{\sqrt{1+{k}^{2}}}$=1,
解可得k=±$\sqrt{3}$,
若有k=$\sqrt{3}$,则有直线y=kx+2与圆x2+y2=1相切,而直线y=kx+2与圆x2+y2=1相切,不一定有k=$\sqrt{3}$,
故条件p:k=$\sqrt{3}$是条件q:直线y=kx+2与圆x2+y2=1相切成立的充分不必要条件,
则¬p是¬q的必要不充分条件,
故选:B.

点评 本题考查充分、必要条件的判定,关键是依据直线与圆的位置关系求出k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知中心在原点,焦点在y轴上的双曲线的离心率为$\sqrt{5}$,则它的渐近线方程为y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P(-1,2)到直线3x-4y+12=0的距离为(  )
A.5B.$\frac{1}{5}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱锥P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,点M,N分别为PB,BC的中点.
(1)求证:AM⊥平面PBC;
(2)E是线段AC上的点,且AM∥平面PNE.
①确定点E的位置;②求直线PE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π).
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[-$\sqrt{3}$,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“对任意的x∈R,x2-2x+1≥0”的否定是(  )
A.不存在x0∈R,${x_0}^2-2{x_0}+1≥0$B.存在x0∈R,${x_0}^2-2{x_0}+1≤0$
C.存在x0∈R,${x_0}^2-2{x_0}+1<0$D.对任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题,若m>$\frac{1}{4}$,则mx2-x+1=0无实根,写出该命题的逆命题、否命题、逆否命题,并判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+x2-ax+2(a∈R)有两个不同的零点x1,x2
(1)求实数a的取值范围;
(2)求证:x1•x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,(不需证明)
(3)若对任意的t∈R,不等式f(t2+2)+f(t2-tk)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案