精英家教网 > 高中数学 > 题目详情
13.在等差数列{an}中,已知a3+a5+a7+a9+a11=180,则a7的值为(  )
A.30B.36C.48D.72

分析 由等差数列{an}的性质,及a3+a5+a7+a9+a11=180,可得5a7=180,解出即可得出.

解答 解:由等差数列{an}的性质,及a3+a5+a7+a9+a11=180,
∴5a7=180,
解得a7=36.
故选:B.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)设Q为圆C上的一个点,$\overrightarrow{PQ}$•$\overrightarrow{MQ}$=-4,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数$\frac{1-i}{2+i}$=x+yi,其中x,y∈R,则x+y=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a=(sinx,cosx),\overrightarrow b=(2{cos^2}\frac{φ}{2}-1,sinφ)$,且函数$f(x)=\overrightarrow a•\overrightarrow b(0<φ<π)$在x=π时取得最小值.
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,a,b,c分别是内角A,B,C的对边,若$a=3,\;f(A)=\frac{{\sqrt{6}}}{3},B=A+\frac{π}{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,∠C=$\frac{π}{2}$,AC=BC,M、N分别是BC、AB的中点,将△BMN沿直线MN折起,使二面角B′-MN-B的大小为$\frac{π}{3}$,则B'N与平面ABC所成角的正切值是(  )
A.$\frac{{\sqrt{2}}}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{3}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个函数中,最小正周期为π,且关于直线x=-$\frac{5π}{12}$对称的函数是(  )
A.y=sin($\frac{x}{2}+\frac{π}{3}$)B.y=sin($\frac{x}{2}-\frac{π}{3}$)C.y=sin(2x-$\frac{π}{3}$)D.y=sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=1,点E,F分别是棱PB,AD的中点.
(Ⅰ)求证:EF⊥平面PBC;
(Ⅱ)求多面体PDFEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$sin(π+α)=-\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(1)求tan(π-α)的值;
(2)求$\frac{sin2α+1}{cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)($\frac{1}{9}$)${\;}^{-\frac{3}{2}}$+8${\;}^{\frac{2}{3}}$+lg$\frac{1}{100}$;
(2)$\sqrt{(lo{g}_{2}5)^{2}-4lo{g}_{2}5+4}$+log2$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案