【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知.
(1)求角C的值;
(2)若c=2,且△ABC的面积为,求a,b.
【答案】(1) (2)a=b=2
【解析】
(1)首先利用降次公式、三角形的内角和定理、两角和的余弦公式化简已知条件,得到,由此求得的值.(2)利用三角形的面积公式和余弦定理列方程组,解方程组可求得的值.
解:(1)2cos2+(cosB-sinB)cosC=1,故cosA+cosBcosC-sinBcosC=0,
则-cos(B+C)+cosBcosC-sinBcosC=0,
展开得:sinBsinC-sinBcosC=0,
∵sinB≠0,即tanC=,∵C∈(0,π),C=.
(2)三角形面积为absin=,故ab=4.
由余弦定理得4=(a+b)2-2ab-ab,所以a+b=4,
故a=b=2.
科目:高中数学 来源: 题型:
【题目】如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.
(1)根据图象,求函数的解析式;
(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个几何体是由一个直角三角形绕其斜边旋转一周所形成的.若该三角形的周长为12米,三边长由小到大依次为a,b,c,且b恰好为a,c的算术平均数.
(1)求a,b,c;
(2)若在该几何体的表面涂上一层油漆,且每平方米油漆的造价为5元,求所涂的油漆的价格.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台中,平面ABCD,四边形ABCD为平行四边形,,,,,E为DC中点.
(1)求证:平面;
(2)求证:;
(3)求三棱锥的高.
(注:棱台的两底面相似)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,可知其概率平分别为.
(1)求1张奖券中奖的概率;
(2)求1张奖券不中特等奖且不中一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,抛物线上有三个动点A,B,C.
(1)若,求;
(2)若,AB的垂直平分线经过一个定点Q,求△QAB面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com