精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱柱中,侧棱底面为棱的中点.

1)证明:

2)求二面角的正弦值;

3)设点在线段上,且直线与平面所成角的正弦值是,求线段的长.

【答案】1)证明见解析;(2;(3

【解析】

1)以为原点建立空间直角坐标系,通过可证得结论;

2)根据二面角的空间向量求法可求得结果;

3)利用共线向量和向量线性运算表示出,根据直线与平面所成角的空间向量求法可构造方程求得,从而得到,求解的模长即为所求结果.

(1)以为原点可建立如下图所示空间直角坐标系

(2)由(1)知:

平面平面

平面 平面

平面的一个法向量为

设平面的法向量

,令,则

二面角的正弦值为

(3)由(1)知:

平面平面

平面 平面

平面的一个法向量为

为直线与平面所成角

,解得:

,即的长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方形边长为若在正方形边上恰有个不同的点,使,则的取值范围为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;

方案2:连猜三道“生活”类试题.

设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.

(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.

(2)职工甲选择哪一种方案所得平均分高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为边的中点,沿折成直二面角,则三棱锥的外接球的表面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距与短轴长相等,椭圆上一点到两焦点距离之差的最大值为4.

(1)求椭圆的标准方程;

(2)若点为椭圆上异于左右顶点的任意一点,过原点的垂线交的延长线于点,求的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆上的动点到一个焦点的最远距离与最近距离分别是的左顶点为轴平行的直线与椭圆交于两点,过两点且分别与直线垂直的直线相交于点.

1)求椭圆的标准方程;

2)证明点在一条定直线上运动,并求出该直线的方程;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年“双十一”全网销售额达亿元,相当于全国人均消费元,同比增长,监测参与“双十一”狂欢大促销的家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校名大一学生中采用男女分层抽样,分别随机调查了若干个男生和个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

分组(百元)

男生人数

频率

合计

女生茎叶图

(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).

(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足元的同学中随机抽取人发放纪念品,则人都是女生的概率为多少?

(3)用频率估计概率,从全市所有高校大一学生中随机调查人,求其中“剁手党”人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,M是线段EF的中点,二面角的大小为60°.

1)求证:平面BDE

2)试在线段AC上找一点P,使得PFCD所成的角是60°.

查看答案和解析>>

同步练习册答案