精英家教网 > 高中数学 > 题目详情
10.函数f(x)=-x3+ax2-x-1在R上不单调,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)B.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)C.[-$\sqrt{3}$,$\sqrt{3}$]D.(-$\sqrt{3}$,$\sqrt{3}$)

分析 求出函数的导数,由题意得函数的导数在R上至少有一个零点,主要不能有两个相等的零点,即可求出实数a的取值范围.

解答 解:∵f(x)=-x3+ax2-x-1,
∴f′(x)=-3x2+2ax-1,
∵若函数f(x)=-x3+ax2-x-1在R上不是单调函数
∴f′(x)=-3x2+2ax-1=0有两个不等的根,
即△=4a2-12>0,
解得a<-$\sqrt{3}$,或a>$\sqrt{3}$,
故选:B.

点评 本题考查了利用导数研究三次多项式函数的单调性,从而求参数a的取值范围,属于基础题,解题时应该注意导函数等于0的等根的情形,以免出现只一个零点的误解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=(  )
A.2或3B.-2或3C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+4a,x<1}\\{1+lo{g}_{a}x,x≥1}\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c分别是内角A,B,C所对的边,已知a=4,B=60°,C=75°,则b=(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.2$\sqrt{3}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式(x2-2x-3)(x-2)<0的解集为(-∞,-1)∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设U={1,2,3,4,5},A={1,2,5},B={2,3,4},则B∩∁UA=(  )
A.B.{2}C.{3,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,D是AB的中点.
(1)求证:BC1∥平面A1CD;
(2)若AA1=AC=CB=5,AB=6,求三棱锥D-AA1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有(  )
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)

查看答案和解析>>

同步练习册答案