精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱柱中,平面平面ABC.

1)证明:

2)设,求二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)要证明,只需证明平面即可;

2)取的中点为M,以C为原点,CACBCM为正方向建立空间直角坐标系,求出平面与平面的法向量,利用向量的夹角公式计算即可.

1)证明:连结.

,四边形为菱形,∴.

∵平面平面ABC,平面平面

平面ABC

平面.

又∵,∴平面,∴.

平面,而平面

.

2)取的中点为M,连结CM.

,四边形为菱形,

.

又∵,以C为原点,CACBCM为正方向建立空间直角坐标系,如图.

.

由(1)知,平面的一个法向量为.

设平面的法向量为

并且

.

,得

.

∴二面角的正弦值为.

【点晴】

本题主要考查线线垂直的证明,坐标法求二面角的大小,考查学生空间想象能力,数学运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产了一批零件,从中随机抽取100个作为样本,测出它们的长度(单位:厘米),按数据分成5组,得到如图所示的频率分布直方图.以这100个零件的长度在各组的频率代替整批零件长度在该组的概率.

1)估计该工厂生产的这批零件长度的平均值(同一组中的每个数据用该组区间的中点值代替);

2)若用分层抽样的方式从第1组和第5组中抽取5个零件,再从这5个零件中随机抽取2个,求抽取的零件中恰有1个是第1组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈尔滨市第三中学校响应教育部门疫情期间停课不停学的号召,实施网络授课,为检验学生上网课的效果,高三学年进行了一次网络模拟考试.全学年共1500人,现从中抽取了100人的数学成绩,绘制成频率分布直方图(如下图所示).已知这100人中分数段的人数比分数段的人数多6.

1)根据频率分布直方图,求ab的值,并估计抽取的100名同学数学成绩的中位数;

2)现用分层抽样的方法从分数在的两组同学中随机抽取6名同学,从这6名同学中再任选2名同学作为网络课堂学习优秀代表发言,求这2名同学的分数不在同一组内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

大学生是国家的未来,代表着国家可持续发展的实力,能够促进国家综合实力的提高.据统计,2016年至2020年我国高校毕业生人数y(单位:万人)的数据如下表:

年份

2016

2017

2018

2019

2020

年份代号x

16

17

18

19

20

高校毕业生人数y(单位:万人)

765

795

820

834

874

1)根据上表数据,计算yx的相关系数r,并说明yx的线性相关性的强弱.

(已知:,则认为yx线性相关性很强;,则认为yx线性相关性一般;,则认为yx线性相关性较弱)

2)求y关于x的线性回归方程,并预测2022年我国高校毕业生的人数(结果取整数).

参考公式和数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点P的坐标是,曲线C的方程为.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为的直线l经过点P.

1)写出直线l的参数方程和曲线C的直角坐标方程;

2)若直线l和曲线C相交于两点AB,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过点,且动圆轴截得的弦长为4,记圆心的轨迹为曲线.

1)求曲线的标准方程;

2)过轴下方一点向曲线作切线,切点记作,直线交曲线于点,若直线的斜率乘积为,点在以为直径的圆上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

同步练习册答案