精英家教网 > 高中数学 > 题目详情
10、如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,则∠DAC=
30°

分析:连接BD,由已知中AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,结合圆周角定理的推论,及弦切角定理,及等腰三角形的性质,我们易求出∠DAC的大小.
解答:解:连接BD,如下图所示:

由已知中AB为圆O的直径,则∠ADB=90°
∠A+∠ABD=90°…①
又∵CD为圆的切线,则∠BDC=∠A
又由DA=DC,可得∠A=∠C
∵∠ABD中三角形BCD的外角,
∴∠ABD=∠ADB+∠C=2∠A…②
结合①得:∠DAC=30°
故答案为:30°
点评:本题考查的知识点是圆周角定理,弦切角定理,其中根据已知条件结合上述定理,判断出∠DAC=∠C=∠BDC,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教网
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱的一个底面ABC内接于圆O,AB是圆O的直径.
(1)求证:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,求几何体EDABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省锦州市高考数学二模试卷(解析版) 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案