精英家教网 > 高中数学 > 题目详情
16.在△ABC中,已知AB=AC,BC=2,点P在边BC上,若$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{1}{4}$,则$\overrightarrow{PB}$•$\overrightarrow{PC}$=$-\frac{3}{4}$.

分析 由题意建立平面直角坐标系,得到B,C的坐标,再设出P,A的坐标,由$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{1}{4}$求得P的横坐标,代入$\overrightarrow{PB}$•$\overrightarrow{PC}$得答案.

解答 解:如图,
以BC所在直线为x轴,以BC的垂直平分线为y轴,建立平面直角坐标系,
则C(1,0),B(-1,0),
设A(0,n),P(m,0),则$\overrightarrow{PA}=(-m,n),\overrightarrow{PC}=(1-m,0)$,$\overrightarrow{PB}=(-1-m,0)$.
由$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{1}{4}$,得-m(1-m)=-$\frac{1}{4}$,解得:$m=\frac{1}{2}$.
∴${m}^{2}-1=\frac{1}{4}-1=-\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.

点评 本题考查平面向量的数量积运算,训练了利用坐标法求数量积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列有关命题的说法错误的是(  )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.“sinx=$\frac{1}{2}$”的必要不充分条件是“x=$\frac{π}{6}$”
D.若命题p:?x0∈R,x02≥0,则命题¬p:?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某同学从语文、数学、英语、物理、化学、生物六科中选择三个学科参加测试,则数学和物理不同时被选中的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,an+1),$\overrightarrow{b}$=(an+1,4)(n∈N*),且$\overrightarrow{a}$∥$\overrightarrow{b}$
(Ⅰ)求{an}的通项公式
(Ⅱ)设f(n)=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{f(\frac{n}{2}),n=2k}\end{array}\right.$bn=f(2n+4),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知sinA+cosA=$\frac{1}{5}$,则sinA-cosA=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=8x上到其焦点F距离为4的点有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=-2x+b一定通过(  )
A.第一、三象限B.第二、四象限C.第一、二、四象限D.第二、三、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=45°,AB=2,AD=$\sqrt{2}$,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|-$\frac{9}{x}$,x∈[1,6].
(1)a=1,解不等式f(x)≤1;
(2)x∈[1,6],f(x)≤5恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案