【题目】已知函数在处取得极值.
(1)求函数的单调区间;
(2)若函数在上恰有两个不同的零点,求实数的取值范围.
【答案】(1)f(x)在(-∞,-1)递减;在(-1,+∞)递增;(2).
【解析】试题分析:(1)求出函数的导数,得到关于的方程,求出,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题等价于在[-2,2]上恰有两个不同的实根.令g(x)=xex+x2+2x,求出函数的单调性求出g(x)的最小值,从而求出m的范围即可.
试题解析:
(1)f'(x)=ex+xex+2ax+2,
∵f(x)在x=1处取得极值, ∴f'(-1)=0,解得a=1.经检验a=1适合,
∴f(x)=xex+x2+2x+1,f'(x)=(x+1)(ex+2),
当x∈(-∞,-1)时,f'(x)<0,∴f(x)在(-∞,-1)递减;
当x∈(-1+∞)时,f'(x)>0,∴f(x)在(-1,+∞)递增.
(2)函数y=f(x)-m-1在[-2,2]上恰有两个不同的零点,
等价于xex+x2+2x-m=0在[-2,2]上恰有两个不同的实根,
等价于xex+x2+2x=m在[-2,2]上恰有两个不同的实根.
令g(x)=xex+x2+2x,∴g'(x)=(x+1)(ex+2),
由(1)知g(x)在(-∞,-1)递减; 在(-1,+∞)递增.
g(x)在[-2,2]上的极小值也是最小值; . 又,g(2)=8+2e2>g(-2), ∴,即.
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,直线:.
(1)若直线与抛物线相切,求直线的方程;
(2)设,直线与抛物线交于不同的两点,,若存在点,满足,且线段与互相平分(为原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:上一点到其焦点的距离为5.
(1)求与的值;
(2)设动直线与抛物线相交于,两点,问:在轴上是否存在与的取值无关的定点,使得?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,用一平面去截球,所得截面面积为,球心到截面的距离为3,为截面小圆圆心,为截面小圆的直径.
(1)计算球的表面积和体积;
(2)若是截面小圆上一点,,分别是线段和的中点,求异面直线与所成的角(结果用反三角表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某产品的销售额与广告费用之间的关系如下表:
(单位:万元) | 0 | 1 | 2 | 3 | 4 |
(单位:万元) | 10 | 15 | 30 | 35 |
若根据表中的数据用最小二乘法求得对的回归直线方程为,则下列说法中错误的是( )
A.产品的销售额与广告费用成正相关
B.该回归直线过点
C.当广告费用为10万元时,销售额一定为74万元
D.的值是20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com