精英家教网 > 高中数学 > 题目详情

(本小题满分13分)设函数f(x)=x3+ax2-a2x+m(a>0).

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;

(Ⅲ)若对任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.

 

【答案】

(Ⅰ)函数f(x)的单调递增区间为(-∞,-a),(,+∞),

单调递减区间为(-a,).(Ⅱ)a>3.   (Ⅲ)m≤-87.       

【解析】本试题主要是考查了函数的极值问题和函数与不等式的综合运用。

(1)∵f′(x)=3x2+2ax-a2=3(x-)(x+a),

又a>0,∴当x<-a或x>时f′(x)>0;

当-a<x<时,f′(x)<0得到单调区间。

(2)由题设可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上没有实根

,解得a>3.

(3)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3

又x∈[-2,2]

∴f(x)max=max{f(-2),f(2)}

而f(2)-f(-2)=16-4a2<0

求解得到。

解:(Ⅰ)∵f′(x)=3x2+2ax-a2=3(x-)(x+a),

又a>0,∴当x<-a或x>时f′(x)>0;

当-a<x<时,f′(x)<0.

∴函数f(x)的单调递增区间为(-∞,-a),(,+∞),单调递减区间为(-a,).(4分)

(Ⅱ)由题设可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上没有实根

,解得a>3.                                            (8分)

(Ⅲ)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3

又x∈[-2,2]

∴f(x)max=max{f(-2),f(2)}

而f(2)-f(-2)=16-4a2<0

∴f(x)max=f(-2)=-8+4a+2a2+m                   (10分)

又∵f(x)≤1在[-2,2]上恒成立

∴f(x)max≤1即-8+4a+2a2+m≤1

即m≤9-4a-2a2,在a∈[3,6]上恒成立

∵9-4a-2a2的最小值为-87

∴m≤-87.                        (13分)

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案