精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x
-2(x≠2),则f(x)(  )
A、在(-2,+∞)上是增函数
B、在(-2,+∞)上是减函数
C、在(2,+∞)上是增函数
D、在(2,+∞)上是减函数
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:由反比例函数的单调性即可判断f(x)的单调性,从而找出正确选项.
解答: 解:根据反比例函数的单调性便知:
f(x)在(2,+∞)上是减函数.
故选D.
点评:考查反比例函数的单调性,弄清反比例函数和f(x)=
1
x
-2的关系,也可由单调性的定义判断f(x)的单调性:x增大时,f(x)减小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R,sinx≠x-1”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=
3
,BC=2,则二面角A-BC-D的大小为(  )
A、arccos
3
3
B、arccos
1
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2,g(x)=ax(a>0且a≠1),h(x)=logax(a>0且a≠1),则对在其定义域内的任意实数x1,x2,下列不等式总成立的是(  )
①f(
x1+x2
2
)≤
f(x1)+f(x2)
2

②f(
x1+x2
2
)≥
f(x1)+f(x2)
2

③g(
x1+x2
2
)≤
g(x1)+g(x2)
2

④h(
x1+x2
2
)≥
h(x1)+h(x2)
2
A、②④B、②③C、①④D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人
(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;
(Ⅱ)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为
3
5
,求n名毕业生中男女各几人(男女人数均至少两人)?
(Ⅲ)在(Ⅱ)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中 PA⊥底面ABCD,PC⊥CD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,PA=AB=BC=3.
(1)求异面直线PB与CD所成的角;
(2)在PB上是否存在点E,是PD∥平面EAC?若存在,求出E点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某射手在一次射击中,射中10环、9环、8环的概率分别是0.20,0.30,0.20,则此射手在一次射击中不足8环的概率为(  )
A、0.40B、0.30
C、0.60D、0.90

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log3x.x>0
cosπx,x<0
的图象上关于y轴对称的点共有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+bx+k(b≠0,k≠0)的图象交x轴于M、N两点,|MN|=2,函数y=kx+b的图象经过线段MN的中点,分别求出这两个函数的解析式.

查看答案和解析>>

同步练习册答案